Alguns jornais brasileiros publicam a coluna semanal de Pasquale Cipro Neto, conhecido professor e autor da área de Língua portuguesa. Um de seus artigos do ano 2000 tratou daquilo que ele apelidou de “portumática”, isto é, da expressão de idéias matemáticas na língua usada em nosso dia-dia. Foram comentados alguns casos saborosos, nos quais a maneira de falar ou escrever agride a lógica e a Matemática. Vejamos alguns exemplos:
(...) O repórter faz uma matéria sobre preços. Vai a uma loja e constata que lá a mercadoria custa R$ 90,00. Em outra loja, custa R$ 30,00. Incontinenti dispara: “Na segunda loja, o produto custa três vezes menos”.
Pois bem. Se custasse uma vez menos, já custaria zero, é claro. Portanto, se aqui custa x e lá custa três vezes menos, o cidadão não põe a mão no bolso e, ainda por cima, sai da loja com o produto e com dinheiro suficiente para comprar mais dois.
Percebeu o que ocorre? Na loja que vende por menos, o produto custa um terço do que custa na outra, e não três vezes menos. Afinal, 30 é 1/3 de 90, e não três vezes menos. Naquela em que custa R$ 90,00, custa o triplo, e não três vezes mais. Se custa três vezes mais, seu preço é R$ 120,00 (30 + três vezes 30). É por isso que só se pode rir quando se ouve que algo diminuiu 150% ou que em outro lugar tal coisa custa x vezes menos.
Um outro comentário refere-se a uma questão de exame vestibular que se tornou famosa. Perguntava-se quanto é o quadrado de 10%. Vejamos:
Antes de ser de Matemática – ou Física, Química, Biologia -, qualquer questão é de texto. Os apressadinhos ou distraídos vão logo dizendo que a resposta é 100%. Afinal, o quadrado de um número é ele multiplicado por ele. Esquecem-se de um detalhe lingüístico-matemático: 10% é diferente de 10. A preposição “por” da expressão “por cento” estabelece a idéia de relação, ou seja, 10% significa 10 em relação a 100, que, como se sabe, equivale a 1/10 (um décimo). Então o quadrado de 10% é o quadrado de 1/10 (um décimo). Faça a conta, o resultado? 1/100 (um centésimo) 1 em relação a 100, ou seja 1%.
Muito bem! A capacidade “de raciocínio lógico ou de algo equivalente” deve ser valorizada por que é necessária por toda nossa vida. Essa capacidade é desenvolvida não só pelo aprendizado da Matemática, mas também pela leitura, analise e produção de textos. E um bom exemplo de analise de texto é o próprio texto do artigo aqui apresentado.
E você, internauta? Sua capacidade de raciocínio lógico foi estimulada por esse texto? Que tal fazer um teste? Basta responder três questões. Mas cuidado! São três questões “espertas”!
- Um produto sofreu um aumento equivalente a 3 vezes seu preço antigo. Agora custa R$ 20,00. Quanto custava antes?
- De quanto por cento foi o aumento referido na questão 1?
- E leve ao quadrado esse aumento e expresse o resultado na forma de porcentagem.
Em breve veremos como se saiu no teste.
Fonte: Matemática para todos, 2. ed. Luiz Márcio Imenes & Marcelo Cestari Lellis. São Paulo: Scipione, 2006.
7 comentários:
por favor, tem em algum lugar as respostas desse teste? muito obrigada
1) Cinco Reais
R$ 5
2) Trezentos por cento
300%
3) Quatro mil e quinhentos por cento
4500%
bem que podia ter a resposta em algum lugar aí hein????????
Qual a resposta afinal
I just could not go away your web site prior to suggesting that I actually enjoyed the usual info an individual
provide for your guests? Is gonna be back frequently to check out new posts
Here is my blog - plus de vues youtube
Also see my website: avoir plus de vue sur youtube
Race of Ƅusіnesses in gettіng top ranks in Ԍoogle is natuгal as those sites with top
гankings are bound to get widе recognition, mammoth
traffic and thus high conversion ratio. People will be more likely to pay attention to the
group of guys theƴ know and like than someone they've
never heard of Ьefore. This will reignite thе flame of terror that we all yearn for aѕ we
tune in to thе series.
Feel frеe tօ visit my web page: factor quema grasa
1) R$ 5,00
2) 300%
3) 900%
Postar um comentário